Artificial Neural Network Approach for Modeling of Mercury Adsorption from Aqueous Solution by Sargassum Bevanom Algae (RESEARCH NOTE)

نویسندگان

چکیده مقاله:

In this study, the adsorption of mercury ions by Sargassum bevanom (S. bevanom) by batch method was investigated. The optimum operating parameters such adsorbent dosage, contact time, and pH, were obtained as: a biomass dose of 0.4 g in 100 ml of mercury solution, contact time of 90 mins and pH 7, respectively. Three equations Morris –Weber, Lagergren and pseudo second order are tested to verify the kinetics of the adsorption process. The data are well explained by the model of Weber Morris. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich are subjected to sorption data to estimate sorption capacity that the Langmuir model indicated Better performance in the fitting of equilibrium data. Also, the thermodynamic parameters indicated that the adsorption process of mercury by S. bevanom is spontaneous and endothermic. Artificial Neural Networks (ANN) was used to predict the adsorption efficiency for the removal of mercury ions that the ANN model can estimate the behavior of mercury removal process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial neural networks approach for modeling of Cr(VI) adsorption from aqueous solution by MR, MAC, MS

The adsorption ability of Dowex Optipore L493 resin modified with Aliquat 336 (MR), activated carbon modified with Aliquat 336 (MAC) and sawdust modified with Aliquat 336 (MS) for removal of Cr(VI) from aqueous solution in batch system was investigated. The effects of operational parameters such as adsorbent dosage, initial concentration of Cr(VI) ions, pH, temperature and contact time were stu...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Artificial Neural Network (ANN) Approach for Modeling Chromium (VI) Adsorption From Aqueous Solution Using a Borasus Flabellifer Coir Powder

An artificial neural network (ANN) model was developed to predict the removal efficiency of chromium (VI) from aqueous solution using a Borasus flabellifer coir powder as adsorbent. The effect of operational parameters such as pH, adsorbent dosage, and initial chromium (VI) concentration are studied to optimize the conditions for the maximum removal of chromium (VI) ions. The ANN model was deve...

متن کامل

Modeling of Compressive Strength of Metakaolin Based Geopolymers by The Use of Artificial Neural Network RESEARCH NOTE)

In order to study the effect of R2O/Al2O3 (where R=Na or K), SiO2/Al2O3, Na2O/K2O and H2O/R2O molar ratios on the compressive strength (CS) of Metakaolin base geopolymers, more than forty data were gathered from literature. To increase the number of data, some experiments were also designed. The resulted data were utilized to train and test the three layer artificial neural network (ANN). Bayes...

متن کامل

Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network

There is a need for knowledge, experience, laboratory, materials, and time to conduct chemical experiments. The results depend on the process and are also quite costly. For economic and rapid results, chemical processes can be modeled by utilizing data obtained in the past. In this paper, an artificial neural network model is proposed for predicting the removal efficiency of...

متن کامل

Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells.

A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 28  شماره 8

صفحات  1124- 1133

تاریخ انتشار 2015-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023